A re-examination of the condensation of 2-benzoylbenzoic acid with m-fluorophenol

J. Gronowska, P. Miecznik and K. Aleksandrzak
Department of Organic Chemistry, Institute of Chemastry, N Copernicus University, 87100 Toruń (Poland)

(Received May 15, 1991; accepted January 6, 1992)

Abstract

The condensation of 2 -benzoylbenzorc acid with m-fluorophenol gives the new 3 -phenyl-3-(4-fluoro-2-hydroxyphenyl)phthalide (1) and the known 3-phenyl-3-(2-fluoro-4-hydroxyphenyl)phthalide (2) in the ratio of 16:51.

Introduction

During the course of investigations into the synthesis of 9 -acetoxyanthracene derivatives [1] from precursors such as 3-phenyl-3-arylphthalides [2], the preparation of amorphous material believed to be 3-phenyl-3-(2-fluoro-4-hydroxyphenyl)phthalide (2) was reported [3]. This reaction has now been re-investigated, and found to be more complicated.

Experimental

All melting points are corrected. Infrared (IR) spectra were recorded on a Specord Unicam SP 200 instrument. Values of $\nu_{\max }$ are reported only for characteristic groups. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 80 MHz Tesla BS 787 C spectrometer in deuteriochloroform solutions; tetramethylsilane (TMS), $\delta=0.00 \mathrm{ppm}$ was applied as the internal standard.

The purity of compounds 1, 1a-1d, 2 and $2 a$ was checked by TLC [Kieselgel, benzene/ethyl acetate/acetic acid (32:8:1 v/v); iodine or conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ were used for detection]. Compounds 1-1d are new; all physical data are given in Table 1.

3-Phenyl-3-(fluorohydroxyphenyl)phthalides (1) and (2)
To a mixture of 2-benzoylbenzoic acid ($11.3 \mathrm{~g}, 0.05 \mathrm{~mol}$) and m fluorophenol ($5.5 \mathrm{~g}, 0.05 \mathrm{~mol}$), was added 8 g of anhydrous ZnCl_{2}. This mixture was heated on an oil bath at $115-120^{\circ} \mathrm{C}$ for 8 h . The melt was dissolved in hot acetic acid and poured into water. The amorphous precipitate
TABLE 1
Physical and spectral data for compounds 1-1d, 2 and 2a

	Compound	Formula ${ }^{a}$ (molecular mass)	M.P. $\left({ }^{\circ} \mathrm{C}\right)$ from EtOH	$\begin{aligned} & \text { IR spectra } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	${ }^{1} \mathrm{H}$ NMR spectra ($\delta \mathrm{ppm}$)
1	3-Phenyl-3-(4'-fluoro-2'hydroxyphenyl)phthalide	$\begin{aligned} & \mathrm{C}_{20} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~F} \\ & (320.3) \end{aligned}$	217.0-218.3	$\begin{aligned} & \text { 1735vs (C=O, } \gamma \text {-lactone); } \\ & \text { 1430s (C-O-C, } \gamma \text {-lactone); } \\ & \text { 1280s (O-H, phenol); } \\ & \text { 1130s (C-F) } \end{aligned}$	$\begin{aligned} & 2.85\left(\mathrm{~s}, 1 \mathrm{H} ; 2^{\prime}-\mathrm{OH}\right) \text {; } \\ & 6.5-8.1(\mathrm{~m}, 12 \mathrm{H} ; \text { aromat.) } \end{aligned}$
2	3-Phenyl-3-(2'-fluoro-4'hydroxyphenyl)phthalide	$\begin{aligned} & \mathrm{C}_{20} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~F} \\ & (320.3) \end{aligned}$	$\begin{aligned} & 187.5-189.5 \\ & \left(\mathrm{CHCl}_{3}-\mathrm{CCl}_{4}\right) \end{aligned}$	1730 vs ($\mathrm{C}=0, \gamma$-lactone); 1445 m ($\mathrm{C}-\mathrm{O}-\mathrm{C}, \gamma$-lactone); 1120s (C-F)	2.65 (s, 1H; 4'-OH)
1a	Acctate of phthalide 1	$\begin{aligned} & \mathrm{C}_{22} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~F} \\ & (362.4) \end{aligned}$	131.0-131.5	$\begin{aligned} & 1770 \mathrm{vs}(\mathrm{C}=\mathrm{O}, \gamma \text {-lactone }) ; \\ & 1370 \mathrm{~m}\left(\mathrm{CH}_{3}, \text { acetate }\right) ; \\ & 1200 \mathrm{~s}(\mathrm{C}-\mathrm{O}-\mathrm{C}, \text { acetate }) ; \\ & 1105 \mathrm{~s}(\mathrm{C}-\mathrm{F}) \end{aligned}$	1.71 (s, 3H; 2'-OAc); 6.93-8.0 (m, 12H; aromat.)
2a	Acetate of phthalide 2	$\begin{aligned} & \mathrm{C}_{22} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~F} \\ & (362.4) \end{aligned}$	$\begin{aligned} & 117.0-118.0 \\ & \text { ref. } 3,132.5-134.1 \end{aligned}$	1765vs ($\mathrm{C}=\mathrm{O}, \gamma$-lactone); $1365 \mathrm{~m}\left(\mathrm{CH}_{3}\right.$, acetate $)$; 1200 s ($\mathrm{C}-\mathrm{O}-\mathrm{C}$, acetate)	$\begin{aligned} & 2.24\left(\mathrm{~s}, 3 \mathrm{H} ; 4^{\prime}-\mathrm{OAc}\right) ; \\ & 7.8-8.05(\mathrm{~m}, 12 \mathrm{H} ; \text { aromat. }) \end{aligned}$
1b	2-(4'-Fluoro-2'- hydroxybenzhydryllbenzoic acid	$\begin{aligned} & \mathrm{C}_{20} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~F} \\ & (322.3) \end{aligned}$	amorphous	$\frac{1}{\mathrm{M}}$	$\frac{1}{\mathrm{M}}$
	ϵ-Lactone of acid 1b	$\begin{aligned} & \mathrm{C}_{20} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~F} \\ & (304.3) \end{aligned}$	157.0-161.0	$\begin{aligned} & \text { 1690s (C=O, } \epsilon \text {-lactone); } \\ & \text { 1275s (C-O-C, } \epsilon \text {-lactone); } \\ & \text { 1140s (C-F) } \end{aligned}$	$\begin{aligned} & 5.4\left(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{Ar}_{3} \mathrm{CH}\right) \text {; } \\ & 6.69-7.9(\mathrm{~m}, 12 \mathrm{H} \text {; aromat. }) \end{aligned}$
1d	9-Acetoxy-10-(2'-acetoxy-4'fluorophenyl)anthracene	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~F} \\ & (388.4) \end{aligned}$	134.0-135.6	1770vs ($\mathrm{C}=0$, acetate); $1365 \mathrm{~s}\left(\mathrm{CH}_{3}\right.$, acetate); 1200s (C-O-C, acetate); 1150s (C-F)	$\begin{aligned} & 1.41\left(\mathrm{~s}, 3 \mathrm{H} ; 2^{\prime}-\mathrm{OAc}\right) ; \\ & 2.60(\mathrm{~s}, 3 \mathrm{H} ; 9-\mathrm{OAc}) ; \\ & 7.0-8.13(\mathrm{~m}, 11 \mathrm{H} ; \text { aromat. }) \end{aligned}$

[^0]was filtered off, washed three times with 15% aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, then with water and dried to afford a mixture (yield, $12.5 \mathrm{~g} ; c .77 \%$) of isomers 1 and 2.

This crude product was dissolved in an aqueous solution of sodium hydroxide ($625 \mathrm{~cm}^{3}$ of 10% aq. NaOH) yielding a yellowish solution. After 3 weeks, the white powdered precipitate of the sodium salt of 3 -phenyl-3-(4-fluoro-2-hydroxyphenyl)phthalide (1) was filtered off, dissolved in water and aq. HCl was added. The precipitated product was filtered off and recrystallized from ethanol to give phthalide $1(2.7 \mathrm{~g}, 16 \%)$.

The addition of water and hydrochloric acid (1:2) to the filtrate resulting from the separation of the sodium salt of 1 afforded a white precipitate, which was filtered off, washed with water and recrystallized from ace-tone-ethanol to give phthalide $2(8.2 \mathrm{~g}, 51 \%)$.

Acetates of phthalides 1 and 2; 1a and 2a
A mixture of phthalide 1 or $2(1.5 \mathrm{~g}), \mathrm{Ac}_{2} \mathrm{O}\left(15 \mathrm{~cm}^{3}\right)$ and anhydrous AcONa (3 g) was heated for 3 h at $120^{\circ} \mathrm{C}$. The solution was then poured into water. The resulting precipitate was filtered off, washed with water and dried. After recrystallization from aq. EtOH colourless crystals of acetate $\mathbf{1 a}$ or $2 \mathbf{a}$ were obtained. Yield, $0.85 \mathrm{~g}(75 \%)$.

2-(4-Fluoro-2-hydroxybenzhydryl)benzoic acid (1b)
Phthalide $1(3 \mathrm{~g}), 80 \mathrm{~cm}^{3}$ of 80% aq. AcOH , and 5 g of Zn dust were heated under reflux for 8 h . After filtration, the filtrate was poured into $700 \mathrm{~cm}^{3}$ of water. The resulting white precipitate was filtered off, washed several times with water and dried in air. Yield of crude produced 1b, $0.71 \mathrm{~g}(70 \%)$.

t-Lactone (1c)

To a solution of acid $\mathbf{1 b}(1 \mathrm{~g})$ in $\mathrm{Ac}_{2} \mathrm{O}\left(15 \mathrm{~cm}^{3}\right)$, anhydrous AcONa $(2 \mathrm{~g})$ was added. The reaction mixture was heated for 3 h at $120^{\circ} \mathrm{C}$. This mixture was then poured into water giving a precipitate. Recrystallization of this product from EtOH afforded colourless crystals of 1 c . Yield, 0.66 g (60\%).

9-Acetoxy-10-(2'-acetoxy-4'-fluorophenyl)anthracene (1d)

A mixture 0.5 g of crude acid $1 \mathrm{~b}, 30 \mathrm{~cm}^{3}$ of $\mathrm{Ac}_{2} \mathrm{O}$ and 2 drops of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ was heated under reflux for 1 h . The yellow solution with blue-violet fluorescence was then poured into $300 \mathrm{~cm}^{3}$ of water. The precipitate was filtered off and recrystallized from EtOH. Yield, 0.45 g (75%). Oxidative degradation of $1 \mathbf{d}$ according to a described procedure [3] afforded anthraquinone.

Results and discussion

Structure (2), assigned to the phthalide obtained from the condensation of 2 -benzoylbenzoic acid with m-fluorophenol, was based on the observation
[3] that reduction yielded crystalline 2-(2-fluoro-4-hydroxybenzhydryl)benzoic acid, a precursor of 9 -acetoxy-10-(4'-acetoxy-2'-fluorophenyl)anthracene. Derivatives of 9 -acetoxy-10-phenylanthracene are important because they exhibit blue-violet fluorescence in organic solvents and can be used as active media for dye lasers and scintillator dyes [4, 5].

In the present work, the reaction of 2 -benzyolbenzoic acid with m-fluorophenol has been repeated and it has been found that the product is a mixture of the new 3-phenyl-3-(4-fluoro-2-hydroxyphenyl)phthalide (1) and its isomer 2 (isolated yields 16% and 51%, respectively), rather than just 2 which was previously described [3] as being an amorphous substance.

$$
\begin{equation*}
\mathrm{Ac}_{2} \mathrm{O} \tag{1c}
\end{equation*}
$$

(1b)

cat.	
conc.	
$\mathrm{H}_{2} \mathrm{SO}_{4}$	

Scheme 1.

The isomers were separated by a reported procedure [6]. The crude mixture was dissolved in 10% aq. NaOH (yellow colour) and left for 3 weeks. The white microcrystalline (or colloidal) precipitate was filtered off (or centrifuged), dissolved in water and acidified with aq. HCl . The white, amorphous precipitate was crystallized from ethanol to give 1, m.p., $217.0-218.3^{\circ} \mathrm{C}$.

The alkaline filtrate after separation of the disodium salt of 1 was diluted with water and acidified. The precipitate was crystallized from chloro-form-carbon tetrachloride to give phthalide 2, m.p., $187.5-189.5{ }^{\circ} \mathrm{C}$.

Acetylation of phthalides 1 and 2 with $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{AcONa}$ gave the corresponding acetates 1 la and 2a.

The structure of compound 1 was proved by chemical [7] and spectral [8] methods (see Scheme 1).

Reduction of 1 gave amorphous 2-(4-fluoro-2-hydroxybenzhydryl)benzoic acid (1b). Acetylation of 1b gave a crystalline ϵ-lactone (1c), the ${ }^{1} \mathrm{H}$ NMR spectrum of which is given in Table 1.

9-Acetoxy-10-(2'-acetoxy-4'-fluorophenyl)anthracene (1d) was obtained from acid 1b by a known method [3]. The structure of $1 d$ was confirmed by chemical and spectral methods: (i) oxidative degradation of $1 \mathbf{1 d}$ gave anthraquinone (the substituents are therefore in the phenyl ring not in the anthracene skeleton) and (ii) a comparison of its ${ }^{1} \mathrm{H}$ NMR spectrum with those of related compounds [3] and model compounds [8]. The ${ }^{1} \mathrm{H}$ NMR shifts for the OCOCH_{3} absorptions in the 2 -position for compound $1 \mathbf{d}$ and in the 4'-position for g-acetoxy-10-(4'-acetoxy-2'-fluoro-phenyl)anthracene [3] confirmed the structures and hence those of phthalides 1 and 2 also.

References

1 J. Gronowska, A. Dzieleńdziak and P. Miecznik, Polish J. Chem., 64 (1990) 317.
2 J. Gronowska, P. Mecznk and A. Dzieleńdziak, Polish J. Chem, 64 (1990) 737.
3 J. Gronowska and A. Dzieleńdziak, J. Fluorne Chem., 4 (1982) 115.
4 J. R. Heldt, J. Heldt and J. Gronowska, Z. Naturforsch., 30a (1975) 612.
5 J. R. Heldt, Z. Naturforsch., $38 a$ (1983) 1197.
6 J. Gronowska and P. Mecznuk, Polısh J. Chem., 61 (1987) 613.
7 J. Gronowska and A. Dzieleńdziak, Tetrahedron Lett., 23 (1982) 5575.
8 J. Gronowska, K. Aleksandrzak, J. Łukaszewicz and R. Zebrowska, Polash J Chem., 56 (1982) 705.

[^0]: ${ }^{\text {a Satisfactory microanalyses: }} \mathrm{C} \pm 0.3 ; \mathrm{H}-0.3$.

